	LOYOLA COLLEGE (AI	UTONOMOUS), CHENNAI –	600 034	ŀ							
1	B.Sc. DEGRE	E EXAMINATION – STATISTICS									
X	FIRST SI	EMESTER - APRIL 2023									
B	FIRST SEMIESTER - APRIL 2023										
	USI 1502 - PROBADII	TTY AND DISCRETE DISTRIBU	TIONS								
D	ate: 09-05-2023 Dept. 1	No	Max : 1	00 Marks							
Ti	me: 01:00 PM - 04:00 PM		111111111	00 10101110							
		SECTION A									
Ans	swer ALL the Questions										
1.	Define the following.			(5 x 1 =							
	5)			(* * -							
a)	Classical probability.		K1	CO1							
<u>b)</u>	Mutually independent events.		K1	CO1							
c)	Conditional probability of bivariate ran	idom variable.	Kl V1	COl							
<u>d)</u>	Correlation coefficient.		KI V1								
e) r	Poisson random variable.		<u>K</u> 1 (5	-1 - 5							
<u></u> 2.	The limiting relative frequency approx	ah af nrahahility is known as		$\frac{\mathbf{X}\mathbf{I}=5\mathbf{j}}{\mathbf{C}\mathbf{O}1}$							
aj	a Statistical h	Classical	N 1								
	c. Mathematical d.	all the above									
b)	If $P(A B) = \frac{1}{2}$ and $P(B A) = \frac{1}{2}$ then $P(A)$	$/D(\mathbf{R})$ is equal to	K1	CO1							
	$\prod \Gamma(\mathbf{A} \mathbf{D}) = \frac{1}{4} \text{ and } \Gamma(\mathbf{D} \mathbf{A}) = \frac{1}{3}, \text{ und } \Gamma(\mathbf{A})$	7/12									
	a. $3/4$ U.	//12 1/12									
c)	The joint distribution function of (X, Y)	$\frac{1}{12}$	K1	CO1							
~,	a. $P(X = x, Y = y)$ b.	P(X < x, Y < y)	121								
	c. $P(X \le x, Y = y)$ d.	$P(X \ge x, Y \ge y)$									
d)	If X and Y are two random variables w	with means \overline{X} and \overline{Y} respectively. Then	K1	CO1							
<i>,</i>	$E[(X - \overline{X})(Y - \overline{Y}]$ is called:	1 -									
	a. $V(X)$ b.	V(Y)									
	c. $Cov(X,Y)$ d.	Moments of X and Y									
e)	For Bernoulli distribution with probabi	lity p of success and q of failure, the	K1	CO1							
	relation between mean and variance is:	·									
	a. mean <variance b.<="" td=""><td>mean> variance</td><td></td><td></td></variance>	mean> variance									
2	c. mean= variance u.	mean≤variance	(5	- 1 - 5)							
э.	Fill in the dianks.		() T	$\mathbf{X} \mathbf{I} = \mathbf{J}$							
a)	Probability can vary from to	•	K2	COI							
b)	If A and B are independent events then	$P(A \cap B) = \$	K2	CO1							
c)	Two types of random variables are	K2	CO1								
d)	If c is a real value, then $M_{ct}(x) =$	•	K2	CO1							
e)	Shifting of origin do not affect the	of the distribution.	K2	CO1							
4.	Match the following.		(5	x 1 = 5)							
a)	Pairwise independent	Posterior probability	K2	CO1							
b)	Baye's theorem	Bernoulli Distribution	K2	CO1							
c)	Continuous random variable	E(X)+E(Y)	K2	CO1							
S	ā										

d)	E(X+Y) Probability density function								K2	CO1			
e)	Single trial $P(A \cap C) = P(A \cap C)$						P(A)P(C)				K2	CO1	
						SEC	TION	B					
Ans	wer any T	WO of	the fol	llowing	questi	ions						(2	x 10 = 20)
5.	(i) State and Prove the addition theorem of probability. (ii) A, B and C are three mutually exclusive and exhaustive events associated with a random experiment. Find P(A) such that $P(B) = \frac{3}{2}P(A)$ and $P(C) = \frac{1}{2}P(B)$.							ated C) =	K3	CO2			
6.	There are two bags. One bag contains 4 red and 5 black balls and the other 5 red and 4 black balls. One ball is to be drawn from either of the two bags, (i) find the probability of drawing a black ball (ii) Find the probability that the ball is drawn from bag 1 and bag 2 respectively.									ner 5 s, (i) t the	К3	CO2	
7.	. Define the Moment Generating Function and its usage. Also, discuss the properties of MGF.									the	К3	CO2	
8.	If a discrete random variable has the probability function as K3								CO2				
	(X=x)	0	1	2	3	4	5	6	7	8			
	P(X=x)	k	2k	3k	5k	5k	4k	3k	2k	k			
	i)	Calcu	late the	e value	of k.								
	ii)	Find	E(X) aı	nd V(X)).								
						SEC	TION	C					
Ans	wer any T	WO of	the fol	llowing	in 100	words)					(2 x 1	0 = 20)
9.	Prove that	$t E(X_1$	$+X_{2} +$	- ··· + X	(n) = E	$E(X_1) +$	$E(X_2$	$) + \cdots E$	$(X_n).$		Î	K4	CO3
10.	From a ci 7/10 (ii) a Find the p a) a non-s b) a male c) a smok	ty popu a male probabil moker er, if a	ilation, smoke lity of s male is	the pro r is 2/5 selecting	babilit iii) a g lected.	y of se male, i	lecting f alrea	g (i) a m ady he i	ale or s a sm	a smok ooker is	er is 2/3.	K4	CO3
11.	Define co	varianc	e and o	discuss	its prop	perties.						K4	CO3
12.	Explain th	ne corre	elation	coeffici	ent and	l its pro	perties	s.				K4	CO3
	<u>i</u>					SEC	TION	D					
Ans	wer any O	NE of	the foll	lowing	in 250	words						(1 x 2	0 = 20)
13.	i) State ar	nd Prov	e Baye	s theore	m.							K5	CO4
	ii) Consider three urns containing white(W), $black(B)$ and red (R) balls as follows: Urn I – 2W, 3B and 4R balls; Urn II – 3W, 1B and 2R balls; Urn III – 4W, 2B and 5R balls. Two balls are drawn from an urn and they happen to be one white and one red ball. Find the probability that the two balls 1W and 1B are drawn from urn L urn II and urn III respectively.												
14.	With usua	al notat	ions, fi	nd p for $9 P(X)$	a binc K = 4	$\frac{1}{P(X)}$	$\frac{2}{1} = 2$	X, if n=6	5 and			K5	CO4
						SEC	TION	E					
Ans	wer any O	NE of	the foll	lowing	in 250	words						(1 x 2	0 = 20)
15.	For the jo	int prol	oability	v distrib	ution o	f two ra	andom	variabl	es X a	nd Y giv	ven	K6	CO5

X		Y					
	1	2	3	4			
1	4	3	2	1			
	36	36	36	36			
2	1	3	3	2			
	36	36	36	36			
3	5	1	1	1			
	36	36	36	36			
4	1	2	1	5			
	36	36	36	36			
i) Fi	nd the marginal d	istributions of	X and Y.	·			
Calculate the	conditional distri	bution of X give	en Y=1 and the	e Conditional			
distribution o	f Y given X=2.						
Define a Bind	omial random var	iable. Also, deri	ve the mean an	nd variance of	K6	CO5	

\$\$\$\$\$\$\$