LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - APRIL 2023
UST 1502 - PROBABILITY AND DISCRETE DISTRIBUTIONS

Date: 09-05-2023
Time: 01:00 PM - 04:00 PM \square Max. : 100 Marks

SECTION A				
Answer ALL the Questions				
1.	Define the following. 5)			$\times 1=$
a)	Classical probability.		K1	CO1
b)	Mutually independent events.		K1	CO1
c)	Conditional probability of bivariate ratale	dom variable.	K1	CO1
d)	Correlation coefficient.		K1	CO1
e)	Poisson random variable.		K1	CO 1
2.	Answer the following MCQ		$(5 \times 1=5)$	
a)	The limiting relative frequency approach of probability is known as a. Statistical b. Classical c. Mathematical d. all the above		K1	CO1
b)	If $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{1}{4}$ and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{1}{3}$, then $\mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})$ is equal to \qquad a. $3 / 4$ b. $7 / 12$ c. $4 / 3$ d. $1 / 12$		K1	CO1
c)	The joint distribution function of (X,Y) is equal to the probability a. $\quad P(X=x, Y=y)$ b. $\quad P(X \leq x, Y \leq y)$ c. $\quad P(X \leq x, Y=y)$ d. $\quad P(X \geq x, Y \geq y)$		K1	CO1
d)	If X and Y are two random variables with means \bar{X} and \bar{Y} respectively. Then $E[(X-\bar{X})(Y-\bar{Y}]$ is called: a. $\quad V(X)$ b. $\quad V(Y)$ c. $\operatorname{Cov}(X, Y)$ d. Moments of X and Y		K1	CO1
e)	For Bernoulli distribution with probability p of success and q of failure, the relation between mean and variance is: a. mean $<$ variance b. mean> variance c. mean= variance d. mean \leq variance		K1	CO1
3.	Fill in the blanks.		($5 \times 1=5$)	
a)	Probability can vary from ___ to ___		K2	CO1
b)	If A and B are independent events then $P(A \cap B)=$		K2	CO1
c)	Two types of random variables are \qquad and \qquad		K2	CO 1
d)	If c is a real value, then $M_{c t}(x)=\square$.		K2	CO1
e)	Shifting of origin do not affect the		K2	CO1
4.	Match the following.		($5 \times 1=5$)	
a)	Pairwise independent	Posterior probability	K2	CO1
b)	Baye's theorem	Bernoulli Distribution	K2	CO1
c)	Continuous random variable	$\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})$	K2	CO1

d)	$\mathrm{E}(\mathrm{X}+\mathrm{Y})$				Probability density function					K2	CO1
e)	Single trial				$\mathrm{P}(\mathrm{A} \cap \mathrm{C})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{C})$					K2	CO1
SECTION B											
Answer any TWO of the following questions										$(2 \times 10=20)$	
5.	(i) State and Prove the addition theorem of probability. (ii) A, B and C are three mutually exclusive and exhaustive events associated with a random experiment. Find $\mathrm{P}(\mathrm{A})$ such that $P(B)=\frac{3}{2} P(A)$ and $P(C)=$ $\frac{1}{2} P(B)$.									K3	CO 2
6.	There are two bags. One bag contains 4 red and 5 black balls and the other 5 red and 4 black balls. One ball is to be drawn from either of the two bags, (i) find the probability of drawing a black ball (ii) Find the probability that the ball is drawn from bag 1 and bag 2 respectively.									K3	CO 2
7.	Define the Moment Generating Function and its usage. Also, discuss the properties of MGF.									K3	CO 2
8.	If a discrete random variable has the probability function as									K3	CO 2
	($\mathrm{X}=\mathrm{x}$)	0 1									
	$\mathrm{P}(\mathrm{X}=\mathrm{x})$	k $\quad 2 \mathrm{k}$									
SECTION C											
Answer any TWO of the following in 100 words										$(2 \times 10=20)$	
9.	Prove that $E\left(X_{1}+X_{2}+\cdots+X_{n}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots E\left(X_{n}\right)$.									K4	CO3
10.	From a city population, the probability of selecting (i) a male or a smoker is $7 / 10$ (ii) a male smoker is $2 / 5$ iii) a male, if already he is a smoker is $2 / 3$. Find the probability of selecting a) a non-smoker b) a male c) a smoker, if a male is first selected.									K4	CO3
11.	Define covariance and discuss its properties.									K4	CO 3
12.	Explain the correlation coefficient and its properties.									K4	CO3
SECTION D											
Answer any ONE of the following in 250 words										$(1 \times 20=20)$	
13.	i) State and Prove Bayes theorem. ii) Consider three urns containing white(W), black(B) and red (R) balls as follows: Urn I - 2W, 3B and 4R balls; Urn II - 3W, 1B and 2R balls; Urn III $-4 \mathrm{~W}, 2 \mathrm{~B}$ and 5 R balls. Two balls are drawn from an urn and they happen to be one white and one red ball. Find the probability that the two balls 1 W and 1 R are drawn from urn I, urn II and urn III respectively.									K5	CO 4
14.	With usual notations, find p for a binomial variate X , if $\mathrm{n}=6$ and$9 P(X=4)=P(X=2) .$									K5	CO4
SECTION E											
Answer any ONE of the following in $\mathbf{2 5 0}$ words										$(1 \times 20=20)$	
15.	For the joint probability distribution of two random variables X and Y given									K6	CO5

\$\$\$\$\$\$

